SUMMARY
T cells of the immune system recognize small antigen peptide fragments loaded onto Major Histocompatibility Complex (MHC) molecules through their T Cell Receptor (TCR). The recognition of antigenic pMHC by the TCR is an extremely sensitive and specific process, discriminating as few as a single antigenic pMHC from the self majority while remaining tolerant to uninfected cells. This unique sensitivity and specificity have been intensely studied, but much is still unknown regarding mechanisms surrounding the antigen recognition process. In the following studies, a Horizontal Atomic Force Microscope (HAFM) was developed to assist in parsing this unique behavior. Utilizing this system, periods of upregulated adhesion, called TCR ligand memory, were investigated between 1E6 TCR and a panel of pMHC of varying potency. The strength of these periods of upregulated adhesion, indicative of an upregulated sensitivity to antigen, inversely correlated with antigen potency. Inhibition of proximal signaling molecule Lck decreased the triggering of these periods, but did not significantly affect their duration. Interestingly, membrane cholesterol oxidation by cholesterol oxidase eliminated TCR ligand memory all together. Treatment with cholesterol sulfate, a naturally occurring analog of cholesterol, depleted TCR ligand memory in a dose-dependent fashion. This behavior was simulated to extract estimates of kinetic parameters and showed that TCRs upregulated their kinetics several magnitudes very quickly upon initial antigen recognition. This mechanism is a way to increase antigenic sensitivity and increase antigen rebinding to further cell activation. xiv Additionally, OT-1 double positive thymocytes were probed by pMHC using a Biomembrane Force Probe (BFP) with different ligands under the presence of CD8, a coreceptor which also binds MHC independently of TCR. Negatively selecting ligands resulted in catch-bonds, and positively selecting ligands resulted in slip bonds. This process relied on the kinase activity of Lck. Simulation-based analysis on these data sets indicated that this mechanism was not the result of passive processes. Force induced formation of long-lived bonds, indicating that mechanical forces are priming formation of a larger complex which enhances lifetime. These bonds dominate the average lifetime and result in catch-bond behavior. Simulations of the BFP assay suggest that mechanotransduction by the TCR resulted in active heterodimerization of CD8 and TCR via interactions between intracellular tails of CD3(TCR) and Lck(CD8). This mechanism results in additional upregulation of binding kinetics for increasing antigen capture and rebinding to promote signaling, thereby also increasing antigen sensitivity and discrimination.
ABSTRACT: This study examined the role of fathers in early childhood education...
Abstract
This study examined the economics and profitability(Agricultural development) of improved cassava production technologies in Enu...
ABSTRACT
The researcher have summarized the contents of this project work which is aimed at finding out...
Abstract
The study examined the effect of working mothers’ career on the social adjustment of stu...
Abstract: This research investigates the preventive role of early childhood education (ECE) in mitigating be...
ABSTRACT
The effect of pre-qualification criteria on performance of contractors cannot be overemphasized. Problems faced in Project manag...
ABSTRACT
The purpose of the study was to assess,“the factors affecting dental pr...
ABSTRACT
This study determined the relationship between achievement motivation and academic performance among science senior secondary sc...
Background of the Study
The rapid evolution of digital technology, particularly the ri...
ABSTRACT
Green tea in its purest and most unadultered form has always influenced human health for generations. Though green tea is not of...